1st Parallella Technical Conference Tokyo May 30, 2015

PARALLELLA PAST

Parallel Computing History

Cognivue SiByte Sandbridge Ambric Cswitch Intellasys SiCortex Asocs Trips Cell CPU Tech Coherent Logix Cradle IP-Flex Rapport Silicon Hive Aspex Axis Semi Greenarrays Recore Venray Clearspeed Plurality Spiral Gateway **BOPS** ElementCXI Inmos Icera Boston Circuits

Morphics Quicksilver Stream Processors Intrinsity Tabula Brightscale

PACT Stretch Picochip Octasic **XMOS** Mathstar Zilabs Movidius Chameleon

SUCCESS STORIES!!!

GENERAL PURPOSE

Post Mortem Interview

Active

IT'S THE SOFTWARE!!

My History (1998-2008)

- TigerSharc DSP (1,2,3)
- Wireless Communication
- Led execution/power team
- Technology success
- Financial failure
- 100 people, \$100M in losses : \$\$\$, \$\$\$ in revenue

- · ADI "ISATG" CCD interfaces
- · SOC Architect/Designer
- Custom RISC architecture
- · 2-3 person digital teams
- Sony, Fujifilm, Canon

Adapteva Before Parallella

Built World's Most Efficient Processor ~\$2M Total Money Spent

Epiphany0
2008
Simulation
16 cores
\$0
65nm

Epiphany-I 2009 Prototype 16 cores \$200K 65nm

-I Epiphany-II
2010
e Prototype
16 cores
\$1.5M
65nm

Epiphany-III
2010
Product
16 cores
\$0
65nm

Epiphany-IV
2011
Product*
64 cores
\$500K

But Adapteva was still dying **SO...**

Parallella Project (Sept 2012)

funded with KICK STARTER

- · GOAL: help parallel happen
- · Single Board Computer
- · Credit card sized
- · 2 ARM + 16/64 Epiphany cores
- · 1GB RAM, GigE, uUSB, uHDMI, uSD
- · ~50Gbps Total IO
- · <5W
- · Open source
- · \$99 starting price
- · \$898K raised
- · (\$3M 64core target not reached)

The Parallella Project Goal

To build a hardware platform that democratizes access to parallel computing hardware.

(affordable, open, available)

Why open?

open source hardware

Customers/Developers:(WIN)

- · Empowers
- · Reduces risk

Makers: (WIN)

- · Fights FUD
- · Reduces support burden
- · Easier collaboration
- · Enables ECO-system
- · Free review / feedback
- Karma points (good will)

First Powerup (May 2013)

- Gen0 (RevA)
- It worked!
- Power too high
- HDMI not working
- But all other design targets met!

Gen0 Shipment (July 2013)

- We build working cluster with 42 boards!
- Sent out 50 boards to early KS backers
- ~1 saw real use
- Pattern??

Chips Arrive (Aug 2013)

- Full mask tapeout
- New package
- Great thermals
- 50,000 built
- ~90% yield!

BIG SUCCESS!!

New Investment (Dec 2013)

- Delays and cost overruns almost killed us
- \$3.6M from Ericsson+VC saved the project!!
- Complete restart with new engineering team
- 5,000 waiting customers
- The worst time of my life...

ERICSSON

Product Version (Jan 2014)

- RevC
- Supply issues stalled mass production
- Still, all shipments done by May 2014
- ~1 year late

Parallella Kickstarter Timeline

The "A1" Experiment (Jun 2014)

- International Supercomputing Conference
- 32 Parallella-64 boards
- 2,112 RISC processors
- 200 Watts
- 15 GFLOPS/Watt efficiency
- 15cm x 15cm x 68 cm
- No traction???

PARALLELLA PRESENT

Parallella Open Source Hardware

"Microserver"

"Desktop"

"Embedded"

Parallella Open Source Software

- MPI (David Richie)
- OpenMP (University of Ioannina, Greece)
- OpenCL (David Richie)
- Erlang NIF (Mark Flemming)
- BSP (University of Utrecht, Netherlands)
- Basic (Nick Brown)
- COPRTHR / STDCL (David Richie)
- RTEMS (Hesham M. AL Matary)
- APL, Forth, Occam, Haskell(TBD, in play)

The Parallel Architectures Library

- A new "standard library" for parallel
- Compact C library with optimized routines for vector math, dsp, synchronization, and multiprocessor communication.
- Designed to be portable across multiple ISAs
- Open source (apache 2.0 permissive license)
- Open invitation to participate!!
- https://github.com/parallella/pal

Parallella by the Numbers

- Over 10,000 Parallella boards shipped
- Over 6,000 boards in stock
- 200 Universities
- 17 academic publications
- 16 open source community projects
- 11 supported programming models
- 12K posts at forums.parallella.org
- Good start, but not enough

PARALLELLA FUTURE

Parallella 2015 Plans

- Software (PAL)
 - Effort started, 5 contributors
- Fun applications
 - SDR (see demo)
 - Imaging (see Porcupine)
- Teaching
 - Programming book will be on github
- Epiphany-V

New Parallella Project Goal

To make parallel programming easy and fun!

How to Contribute?

• PAL (SW):github.com/parallella/pal

• OH (HW): github.com/parallella/oh

• Examples: github.com/parallella/parallella-examples

• Education: Teach through articles / blog posts

Let's Change Software Forever

Not a question of if, but when! This is a once in a universe opportunity!

ANNOUNCEMENTS

#1. SUPERCOMPUTER.IO

The first live test will be run at the Parallella Technical Conference in Tokyo on May 30th!

#2 New SDR Platform

New Adapter Board

FCOMMS2 (from Analog Devices)

- Based on RFIC AD9361
- 12 bits DACS/ADCs
- 70 MHz 6 Ghz
- RF 2 × 2 transceiver
- 56MHz BW

#3 New Imaging Platform

PMOD

elinks

WANTED!
Working
Raspberry Pi
Camera Module
\$1000 Reward

JTAG

Raspberry Pi Camera Interface

48 IO I2C UART

#4 The PAL Bounty System

- A free Parallella board for every PAL function contributed
- Sponsored by Adapteva
- Math, DSP
- github.com/parallella/pal

(Terms to be published at parallella.org/pal)

#5 Image Recognition Demo with supercomputer.io & Parallella

- "Naive" but educational fast convolution
- Leverages Epiphany FFT performance,
- 280 images/sec per board, still optimizing...

