Introduction	Application	LCD	SDR	The End

Practical Parallella expansion board design My path to an autonomous SDR device

Sylvain Munaut

PTC Tokyo, May 30th, 2015

Introduction	Application	LCD	SDR	The End
●○	000	000000	oo	
Outline				

1 Introduction

2 Application

3 LCD

4 SDR

5 The End

Sylvain Munaut Practical Parallella expansion board design

< => < => < => < =>

Introduction	Application	LCD	SDR	The End
⊙●	000	000000	oo	000
About the speake	r			

- Linux and free software "geek" since 1999
- M.Sc. in C.S. + some E.E.
- General orientation towards low level
 - Embedded, Kernel, Drivers and such.
 - Hardware (Digital stuff, FPGA or RF)
- Interest in various telecom and SDR projects for several years
 - Osmocom
 - GNURadio
 - In my spare time
- Kickstarter backer
 - And got the various evolutions (Proto / Rev0 / Rev1 / Rev 1.1)
 - Thanks Andreas !

Introduction	Application	SDR	The End
Application	Parallella ?		

- Autonomous SDR device
 - Record / Analyze / Generate RF signals on-the-go
- Requirements
 - DSP intensive \Rightarrow computational power
 - Battery operation
 - Portable
- Peripherals
 - LCD
 - Touch screen
 - RFIC
 - Battery control
 - Audio (?)
 - Low Speed control (SPI/I2C/GPIOs/LEDs/Buttons)
 - Knob (All test instruments needs Knobs !)

Introduction	Application	LCD	SDR	The End
00	○●○	000000	oo	000
Application Why it's a great fit				

Computational power

- FPGA: Simple high-throughput DSP
- Epiphany: Balanced throughput/complexity DSP
- ARM: Control / Higher protocol stack levels

Low Power

- Needed for battery operation
- GPIOs !
 - 48 GPIOs
 - High-Speed differential connector
 - Flexible V_{IO}

Introduction	Application	LCD	SDR	The End
00	00●	000000	oo	000
Application				

- "Only" 48 GPIOs available
 - $\Rightarrow~$ Use them wisely
- Unique V_{IO}
 - \Rightarrow May require level shift
- No MGTs
 - No JESD204B (ADC/DAC serial link)
 - No SATA
 - No eDP
- eLINK bandwidth
 - Fixed now ?

> < E > < E

Introduction	Application	LCD	SDR	The End
00	000	●00000	00	000
LCD				

- 3 main types of interface
- Parallel
 - Simple
 - High pin count
 - Not so popular with recent high resolution panels
- eDP
 - Very fast serial link (multi Gb/s)
 - Zynq HR IOBs can't go that fast
 - Would need MGTs, not available on Parallella
- MIPI-DSI
 - Fast serial link (hundreds of Mb/s)
 - Not directly drivable from ZYNQ
 - But with some low complexity external help, it's doable

Introduction 00	Application 000	LCD 00000	SDR oo	The End 000
LCD				
MIPI DSI Phy				

- N data lanes + 1 clock lane
- 1 lane = P + N signals
- LP mode: 1.2V signalling, 50 ohm driver impedance
- HS mode: Differential signalling into 100 ohm, 200mV CM, 200mV swing

Introduction 00	Application 000	LCD 000000	SDR oo	The End 000
LCD				
MIPI DSI Phy v1				

Pros:

Simple & Cheap

Cons:

- For 4 lanes MIPI-DSI, uses 20 FPGA GPIOs
- In IDLE LP11 state, burns 8.5 mA per signal

	LP driver	HS driver
LP0	0	HiZ
LP1	1	HiZ
HS0	0	0
HS1	0	1

Introduction 00	Application 000	LCD 000000	SDR 00	The End 000
LCD				
MIPI DSI Phy v2				

- Add LVCMOS 1.2v level shifter to drive LP branch
- Pros:
 - Still Simple & Cheap
 - LP11 is now low-power
 - Can share lane 2,3,4 LP signals from FPGA
 - Could also get rid of clock LP signals
 - For 4 lanes MIPI-DSI, usage down to 14 FPGA GPIOs
- Cons:
 - Adds an active component

Introduction	Application	LCD	SDR	The End
00	000	000000	00	000
LCD				

- Kindle Fire HD 7 inch
- Available as LCD+Digitizer assy from ebay for 60 USD

LCD

Selection

- Model LD070WX3
- 800 by 1280 resolution
- MIPI-DSI 4 lane interface
- Datasheet available
- Connector known and somewhat available
- Kindle bootloader (u-boot) GPL with MIPI init sequence

Digitizer

- Integrated Atmel mXT768E controller
- No datasheet
- **but** there is a GPL kernel driver
- Unknown connector

Introduction 00	Application 000	LCD 00000	SDR oo	The End
LCD				
lt works				

Sylvain Munaut Practical Parallella expansion board design

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣

Introduction	Application	LCD	SDR	The End
00	000	000000	●○	
SDR				

- Use the Myriad RF module
 - At least at first
 - Avoid dealing with weird package
 - Avoid dealing with RF part
- Available

RFIC: LMS6002D

- Owned some already
- Not the cheapest though
- Lots of open source resource available
 - Full docs open
 - Driver / Control code from other projects

Introduction	Application	LCD	SDR	The End
00	000	000000	○●	000
SDR Interface				

- Raw parallel data interface is 14 signals
 - RX and TX would use 28 GPIOs
 - Way too much !
- Use external LVDS SerDes chips
 - Selected "Channel Link" SerDes from TI
 - RX and TX now use 12 GPIOs (6 diff pairs)
 - Bonus: 2.5v / 3.3v level conversion to Myriad RF
- Some down sides
 - Costs money / space / power
 - On TX, recovered clock will be used for the ADC, watch for phase noise !
- Status
 - Prototype built last week
 - Didn't actually try it yet

▶ ∢ ≣

Introduction	Application	LCD	SDR	The End
00	000	000000	oo	●○○
Final words				

Display

Current State

- PHY working
- Work needed on HDL and Software side
- SDR
 - Begin testing

(ロ) (四) (日) (日) (日)

Introduction	Application	LCD	SDR	The End
00	000	000000	oo	○●○
Thanks				

Thank you for your attention !

< => < => < => < =>

Introduction	Application	LCD	SDR	The End
00	000	000000	oo	○○●
Questions ?				

Any questions ?

イロト イヨト イヨト イヨト

æ